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The spectrum of the transfer operator s for the map Tx = 1 /x -  [l/x] when 
restricted to a certain Banach space of holomorphic functions is shown to coin- 
cide with the spectrum of the adjoint U* of Koopman's isometric operator 
Uf(x)=foT(x)  when the former is restricted to the Hilbert space J(('2(v) 
introduced in part I of this work. If ~g" denotes the operator ~ - P1 with P~ the 
projector onto the eigenfunction to the dominant eigenvalue 21 = 1 of ~ ,  then 
-Jg" is a u0-positive operator with respect to some cone and therefore has a 
dominant positive, simple eigenvalue -22. A minimax principle holds giving 
rigorous upper and lower bounds both for ,t 2 and the relaxation time of the 
map T. 

KEY WORDS: Transfer operator; continued fraction; relaxation time; 
minimax principle; trace formulas. 

1. I N T R O D U C T I O N  A N D  R E S U L T S  

In the first par t  of this paper, (1~ denoted  henceforth I, we discussed the 
Hilbert  space approach for the relaxat ion time ~ of Gauss '  continued-frac-  
t ion map  Tx  = 1 I x -  [1 /x ] ,  x 4 = 0. The main  object of study was the adjoint  

operator  U* of K o o p m a n ' s  opera tor  U f ( x )  = f o  T (x )  in the Hilbert  space 
L2(/0, where # denotes the Gauss  measure d # ( x ) =  [ 1 / ( x +  1)] dx. If k 

denotes the restriction of U* to the Hilbert  space ~ 2 ( v ) ,  some Hardy  

space of ho lomorphic  functions in the half-plane, then the spectrum of R 
turns out  to be real and  discrete: R is isomorphic  to a generalized Hankel  
t ransform in some L2 space over the positive real axis. Using in part  
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numerical arguments, we showed the subdominant eigenvalue )~2 of /~ 
to be simple and negative. Generalized Temple inequalities then allowed a 
rather accurate determination of 22 and therefore of r through the relation 
r =  -1 / log  1221. Furthermore, interesting trace formulas for the operators 
/ ~  where proved for n = 1 and n - - 2  relating these traces to the fixed points 
of the map T" and conjectured for arbitrary n. 

In this part of our investigation we discuss the Banach space 
approach; more precisely, the transfer or Perron-Frobenius operator 
~: Ll(dx) --+ L~(dx) of the map T defined quite generally as 

1 
L~~ = ~ iT,(y)------~lf(y ) (1) 

y e  T l(x) 

~e describes just the transformation of densities under the map T. This 
operator is known to be closely related to the operator U* and can 
therefore be used as well as the latter to characterize ergodic properties of 
the map T. (2) Some of the spectral properties of ~ for the Gauss map have 
been investigated ~3'4) in relation to analyticity properties of generalized zeta 
functions for this system�9 They have been used quite recently by Pollicott (5) 
in his work on the distribution of periodic orbits of the geodesic flow on 
the modular surface. The main result proved in Refs. 3 and 4 is that 5 ~ 
becomes a nuclear operator when restricted to a certain Banach space 
A~(D) of holomorphic functions over the disk D = {ze C: Iz-11 < 3/2}, 
which, furthermore, is uo-positive m) with respect to a cone of positive 
functions in this space. In addition, simple trace formulas have been 
derived relating the trace of 5a n to the fixed points of T n for arbitrary n. 

What we intend to do in the present paper is to clarify the connection 
between the above results on LP and those on the opera tor / s  derived in I. 

In fact, what we can show is the following: the spectrum a ( ~ )  of the 
operator ~ in the space A~(D) is identical to the spectrum q(/s o f /~  in 
the space W2(v). Therefore the trace formulas for ~ mentioned above are 
also valid for the operator K. They lead to new identities for multiple 
integrals over products of Bessel functions. As a byproduct of this spectral 
identity, we get the result that a(~q ~) is real, for which we do not know a 
direct proof. This, on the other hand, has interesting implications on the 
location of the poles in the zeta function of Ruelle for this system. (3) 

In contrast to the discussion in I, we can prove in the Banach space 
setting without relying on numerical work that ~q~ has a subdominant 
eigenvalue 22, which is negative and simple. This follows from the fact that 
the operator - d V  in the decomposition 5 r  +./V is also uo-positive 
with respect to some cone C in a certain Banach space of holomorphic 
functions. This implies that Y also can be decomposed as X = ,~2P2 + ,//{, 
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where J~2 is its dominant eigenvalue in absolute value and P2 is the projec- 
tor onto the corresponding eigenfunction h 2. The ~r is a linear operator 
with JC/Pz=P2Jr and spectral radius strictly smaller than -22 .  We 
expect Jr to be uo-positive with respect to some cone, and so on, so 
that finally all eigenvalues 2i of 5r would be simple. 

The property of - •  to be uo-positive ensures a minimax principle for 
22, which at least in principle allows its exact determination. Anyhow, it 
gives rigorous upper and lower bounds for 22 and therefore also for the 
relaxation time ~ of T, which are indeed rather good even for very simple 
test functions, as will be shown. 

The paper is organized as follows: In the next section we introduce the 
transfer operator Y for T, the relevant Banach space Al,oo(D ) of 
holomorphic functions, and recall some of the properties of ~ in this 
space, which follow from similar results in Refs. 3 and 4, where a slightly 
different space was used. In the next section we prove that ~(LP) in the 
space A~.o~(D) is identical to a(K) in the space ~2(v)  as discussed in I. We 
next define the cone C and show uo-positivity of the operator - J V  with 
respect to this cone. From this a minimax principle for the eigenvalue 22 
follows, giving upper and lower bounds. We close with two conjectures 
about a possible extension of these spectral results to more general com- 
position operators in spaces of holomorphic functions arising, for instance, 
as transfer operators of locally exPanding dynamical systems. 

Some of our results have been obtained by Wirsing ~6) in a somewhat 
different approach. 

2. T H E  T R A N S F E R  O P E R A T O R  F O R  T 

The Perron-Frobenius, or as we prefer to call it, the transfer operator 
for a general map T of the unit interval I is defined as the following 

linear bounded operator 5a: L , ( d x ) ~  Ll(dX) on the space of Lebesgue- 
integrable functions over I: 

1 
~L~f(x)= ~ iT,(y)-----~}f(y ) 

y~  T - I x  

where T-1x denotes the set of preimages of x. If f is a density, then Aafis 
just the density after the action of T on L In the case of the map T(x) = 
1 / x -  [1/x], x r this gives 

' ( )  f 1 ~ f ( x )  = (2.1) 
z.., (x +n)2 n = l  

This is a special case of a class of transfer operators for T discussed in 
Refs. 3 and 4. There it was shown that ~ defines a nuclear operator of 
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order zero (7)'2 when restricted to the Banach space A o~(D) of holomorphic 
functions over the disk D with D = {ze C: I z -  11 < 3/2}. Another possible 
choice is the disk D1 defined as Dl = {zeC:  I z - i I  < 1}, which was used 
by Pollicott <5) in his recent work on the distribution of periodic orbits of 
the geodesic flow on the modular surface. In Ref. 4 we showed that 5e is Uo- 
positive with respect to the cone of positive functions on DR--D c~ ~ and 
derived in this way a new proof of Kuzmin's theorem for the Gauss map 
and other piecewise expanding maps also in higher dimensions. For the 
present discussion a slightly different space of holomorphic functions 
appears to be more suited. Denote by Al,oo(D) the Banach space of 
holomorphic functions over D, which together with their first derivatives 
are continuous on/3,  together with the sup norm 

Ilfll =max{sup If(z)l, sup [f '(z)l } 
z e B  z e D  

(2.2) 

Trivially this space is a subspace of the space A oo(D). The transfer operator 
is a bounded linear operator on this space and it is straightforward to 

extend the above properties of 50 from the space Ao~(D) to the space 
AI,~(D): 5 ~ can be decomposed as 5 ~ = PI + 3t/4, where P1 is the projector 
onto the eigenfunction h i (z )=  1/(z+ 1)log 2 corresponding to the eigen- 
value 21 = 1. Its explicit form is given as 

P1 f(z)= hi(z) I2 f(x) dx (2.3) 

JV is some bounded linear operator with P1X=JV'P1 = 0  and spectral 
radius strictly smaller than unity. If Cr g(n) denotes the correlation function 

Cf.g(n)= I~ d#(x) f(Tnx) g(x)-  f~ d#(x) f(x) f~ d~(x) g(x) 

then this function can be written for observables f, g e AI,~(D) as 

Cj. g(n)= dx f(x)(~Lk'- P1) n (hi" g)(x) (2.4) 

because d#(x)= hi(x)dx. Kuzmin's theorem then follows from 

iCf, g(n)l <~pn Ilgll L[fll for f ,  geA1,o~(D ) 

where p denotes the spectral radius of JV. From this we see that the 
relaxation time r for T is simply given as z = - I / l o g  1221, where 22 is in fact 

2 A brief review of this theory can be found in Ref. 8, Appendix A. 
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the dominant eigenvalue of JV in absolute value determining the spectral 
radius of Y ,  as we will show. In Ref. 3 we also proved simple trace 
formulas for the operators 5on, relating them to the fixed points of the 
map T": 

trace 5O" = (xi2 i~ + ~,..., ~~ ~1,..., ~ , ) - 1 - ( - 1 ) "  (2.5) 
il,..., i n~  1 1 

valid also in the space AI,o~(D), where xil,... ' io denotes the number xE [0, 1] 
whose continued-fraction expansion is periodic of period n with entries 
i 1 ..... i n. It is obvious that these numbers are just the fixed points of the 
map T n. 

Before discussing the eigenvalue 22 in some detail, we first investigate 
the relation between the spectrum a(so) of the transfer operator 5O in the 
space AI,~(D) and the spectrum a(k)  of the operator /s in the Hilbert 
space ~z (v )  as studied in I. 

3. THE RELATION BETWEEN a ( ~ )  AND a(/~) 

We know already that both spectra consist of eigenvalues 
accumulating at the point 2=0 .  We want to show that indeed 
a ( k ) = a ( s o ) ,  and that 5O and k have exactly the same eigenvalues, 
multiplicities included. To show this, we start with the identity ~2) 

5o(hl . f ) =  hl . V f  (3.1) 

valid for a l l f ~  AI,~(D), where V: AI,o~(D ) --. AI,~(D) denotes the operator 

z + l  ,(,) 
(z + n ) ( z  + n +  l )  

V f ( z )  = (3.2) 
n = l  

V therefore has exactly the same form as the operator/~ in I, the only dif- 
ference being the different spaces on which they act. From (3.1) it is clear 
that o-(5 ~ = a(V) and all eigenvalues have the same algebraic multiplicities. 
This shows that for arbitrary n 

trace 5on = trace V n (3.3) 

because V is also of trace class in the above space. 
We now show the following result: 

Theorem 1. The spectra cr(5o) and a(/~) are identical, algebraic 
multiplicities of the eigenvalues included. 

822/50/1-2-22 
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ProoL Take any eigenvalue 2 ~ ~(/~). Then we know already from I 
that ~.r Denote by ~b the corresponding eigenfunction in ~2(v)  such 
that k ~  = 2~b. From Theorem 5 in I we know that 

~b(z) = (z + 1) din(t) e-Ztq3(t) (3.4) 

where q~ e L2(m) satisfies the relation 

2~p(t) = f o  drn(s) Jl(2(st)l/2)/(st)1/2 cp(s) 

and dm( t ) = t dt( e t -  1) -1. 
This shows that ~p is bounded on [0, oo). But from relation (3.4) we 

see that ~p is holomorphic in every half-plane Re z > - 1  + 6, 6 > 0. This 
shows that ~b e AI,~(D) and that therefore ~(/~)~ a(5~ Take, on the other 
hand, any ;~ ~ ~(~) .  We will show first that 2 r 0. Otherwise there exists a 
function 0 C f ~ AI.~(D) such that 

. = 1  ( z + n )  2 

If g(z) denotes the function f(1/(z + 1)), we see that g(z) is holomorphic in 
the domains R e z >  -1 /2  and Iz+ 1[ >2.  Furthermore, we have that 
Ig(z)[ < M in the last domain for some M >  0. The eigenvalue equation for 
g(z) reads 

i ' g(z)=  - ( z +  1) 2 (z+n)2 g ( z + n -  1) (3.5) 
n ~ 2  

From this equation one derives recursively that g(z) can be analytically 
continued to the domain Re z > - 7 / 2  and defines in this way a 
holomorphic function in the whole complex plane. Because, as we saw, g is 
bounded in the domain !z + 1[ > 2, it is bounded everywhere and therefore 
a constant. Relation (3.5) then shows that g must vanish identically and 
therefore also f .  But then 2 r 0. 

Let f e  A I,~(D) be the eigenfunction corresponding to the eigenvalue 
0 r 2 e a ( ~ )  = a(V) such that 

f 1 2f(z)= (z + l ) (3.6) 
(z +n)(z +n+ l) 

n = l  

From this one derives again recursively that f is holomorphic in every half- 
plane H~= {z: Re z >  1 - 6 }  for all 3 > 0 .  There one uses the contraction 
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properties of the maps 0 , ( z ) =  1/(z+n). (4) For any of these half-planes 
there exists a bounded domain B6 in D such that 0n(H6) ~ B6 for all n ~> 1. 
Hence there exists M6 > 0 such that 

sup I f(tp,(z))] <<. M6 (3.7) 
z~H6,n>~l  

This shows that f in (3.6) is bounded in every H6 for ~ > 0. We still have to 
show that ~ dv(z)]f(z)12 < 0% where v denotes the measure 

t dxdy 
dv(z) = 

(1 -t- X)2 "] - y2  

in the strip - 1/2 ~< x ~< 0. 
Inserting this expression and using the eigenvalue equation (3.6), we 

find 

f dr(z) [ f(z)E 2 

='-~g _l/2ax dy n~_l~-Z_l_n)(z_[_rt_t_l) f 

n = l m ~ 1 " - -  

1 1 
( x + n )  2+ y2 ( x + m )  2+ y2 

for some constant C > 0. Schwartz's inequality then shows that 

f dv(z) tf(z)12<~C' ,~-1 dY [(n-1/Z)2+ y2]2j -] 

Because 

f o  1 1 /"(1/2) r(3/2) 
dy [(n- 1/2) 2 + y232 (n- 1/2) 3 2F(2) 

we finally get 

f 
2 

J dr(z) I f(z)l 2 ~< C" n 1 ( n - 1 / 2 )  3/2 < oo 

and therefore fe~2(v).  This, however, shows that ~ r ( ~ ) c a ( / ( )  and 
therefore ~r(s -- a(/~). 

Let us finally discuss the algebraic multiplicities of the different eigen- 
values. Because k is isomorphic to a self-adjoint operator K (see I), the 
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algebraic multiplicity of any )~ e a(/~) is equal to its geometric multiplicity. 
From our foregoing discussion of the eigenfunctions it follows that the 
algebraic multiplicity m~(2) of any eigenvalue 2 E a ( ~ )  fulfills 

m,r ~< mse(2) (3.8) 

Theorem 3 in I and relation (2.5) for n = 2 show, however, that 

[ m k ( 2 , )  - rn~(2~) ]  2 2 = 0 (3.9) 
i 

Because all 2~ are real and different from zero, we have 2 2 > 0 and therefore 
because of relation (3.8) we must have 

rng(2) = mao()~) = m v(2) 

This concludes the proof of Theorem 1. 

As a result, we get the trace formulas announced at the end of Sec- 
tion 3 in I for general n: the traces of the ope ra to r s /~  (respectively K' )  can 
be expressed as in the case n = 1 and n = 2 by the fixed points x~,,..., i~ of the 
map T ' :  

trace K" = x 72 . tk . . . . . . . .  i l , . . , , i k - I  - ( - -  1)n 
il,.,., in= 1 1 

Hence Theorems 2 and 3 in I are special cases of this general result. 
Let us add some remarks. We have not succeeded in proving reality of 

a(Le) in AI,~o(D) directly without using the relation c r ( ~ ) = a ( R )  of 
Theorem 1. It would be interesting to understand this property within the 
Banach space approach from the special form of the transfer operator. We 
come back to this question at the end of this paper. The only case we 
understand is the eigenvalue 22, which we discuss next. 

4. uo-POSITIVITY OF THE OPERATOR X 

We want to apply the theory of composition operators developed in 
Refs. 9 and 10, which is based on Krasnoselskii's ~ work on u0-positive 
operators in general Banach spaces. We used this technique in Ref. 4 to 
discuss Kuzmin's theorem for quite general locally expanding maps in ~k. 
Our main concern there was the highest eigenvalue of the corresponding 
transfer operators. Here we are interested in their subdominant eigenvalue 
A2. In an earlier discussion of transfer operators for one-dimensional lattice 
spin systems C8) we found that subdominant eigenvalues also can be studied 
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by this technique. Because our discussion is closely related to the one there, 
we can proceed rather rapidly. 

To start with, let A~,~(D) be the real subspace of AI,~(D) of all f that 
take real values on DR=AnD. Because every eigenfunction hi of 
belonging to an eigenvalue 2i ~ 25 satisfies (4) 

fl hi(x) dx O= Plhi 

every corresponding eigenfunction/~; of the operator V in (3.2) fulfills 

f~ ~(x) hi(x) = ( 4 . 1 )  dx 0 

Hence, we can restrict our discussion to the subspace 

We find because of the general relation (2~ 

f~ Yf(x) dx = ~ f(x) dx (4.2) 

that 5~ leaves this subspace A ~ ( D )  invariant and 

S I ~(D)  = ~ I Z~(m (4.3) 

For feA~,oo(D ) of the form f = f . h  1 we get from relation (3.1) 

X ( f  .hl)=h~. Vf 
so that the spectrum a ( X )  of ~ is identical to the spectrum a(V) of the 
operator V in the space 

A~(D)={f  ~A~.~(D): I~ f(x)h,(x)dx=O } (4.4) 

Consider next the real subspace A~(D) of all fiE A(,,~(D) that take real 
values on De, and in this space the cone C defined as 

C=  { j ~ A ~ ( D ) :  j~'(x)~>0 on D~} (4.5) 

Because from j and - ) ~ C  it follows that ~'-=0 on D R and therefore 
f =  const on D, the property ~o~ f(x)  h~(x) dx = 0 shows that f =  0. Hence C 
is a proper cone, 
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To show that C is reproducing, take any f eAI,~;(D).• R Since f '  is 
continuous on/7,  

M= max If ' (x)l  
xe/SR 

exists and is finite. The function rio(Z)=Z+ 1 - 1 / l o g  2 is obviously an 
element of C, as is the function ~,l(z)=Mrio(Z). Then the function 
~2(z) = f ( z )  + ~l(z) fulfills ~;(x) = f ' ( x )  + ~](x)~> 0 and therefore ~2 ~ C. 
Hence, we can write f(z)= ~2(z) -  ~l(Z) with both ~ie C. This shows that 
C is reproducing. A final property of C we should mention is that d = 
int C # ~ ,  since, for instance, rio(z) is such an interior element. 

We can then show the following result: 

kemma 1. The operator V: •  - Aj,v~(D)--*A~(D ) is positive with 
respect to the cone C. 

Proof. Let f be an arbitrary element in C. Then we have 

f 1 

where a,,(z) are holomorphic functions in D given by 

a . ( z )  = 
z + l  

(z +n)(z +n+ 1) 

Because ~22=1 an(z)= 1 uniformly in/7,  we have in the same domain 

a ' A z )  = 0 
n = l  

Differentiating expression (4.6) gives 

(4.7) 

(-Vf)'(z)= - ~ a;(z)f + ~'~ an(Z)(z+rt) 2 Z-~ (4.8) 
n = l  n = l  

Restricting the argument to De,  we see that the terms in the second sum 
are all nonnegative, so that this sum is nonnegative. To discuss the first 
sum, we deduce from relation (4.7) that we can assume f positive on DR: 
otherwise replace f by f +  M and M large enough. Because f'(x)>~0 on 
DR, the function f(1/(x +n)) is monotone decreasing in n. Consider next 
the functions -a',(x). Their explicit form is 

1 (x+, ) 
1 (4.9) -a'~(x)=(x+n)(x+n+l) x+n x + n + l  
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This shows that there exists for every x ~/5~ an integer m = m(x) such that 

~>~0 for n<~m(x) 
-a 'n(x) ( <0  for n>m(x) 

But then 

- >f Z - , , . ( x )  ~ o 
n ~ l  X-I -  n = l  

On the other hand, relation (4.7) gives 

re(x) 
E --a'n(X)= ~ a'n(X) 

n = 1 n = m ( x ) +  1 

and therefore 

1 ) re(x) 

f 7+re(x) E 

This shows that 

1 

n = m ( x ) +  1 

( ')  
n = re(x) + l 

- a'o(x) f ~ >>. o 

and therefore ( -Vf ) (x )> t ,0  on /3~  for j~e C. 
For the following discussion let us briefly recall the notion of a Uo- 

positive operator P in a real Banach space B with cone K(11): 

Defini t ion.  For uoeK, u0r  the positive operator P : B ~ B  is 
called uo-positive if there exist for every f e  K, f r  0, constants e -- e ( f )  > 0, 
fl = /~(f )  > 0, and an integer n = n(f) such that ~Uo ~1~ P"f ~K BUo, where 
~</( denotes the ordering induced by the cone K on B. 

As before, we denote by rio the function ri0(z) = z + 1 - 1/log 2 in the 
cone C defined in (4.5). Then we have the following result: 

Lemma 2. The operator V:A~.2(D )~  • - , Ax,oo(D ) is uo-positive. 

Proof. Take any f ~ c ,  r e 0 .  We know already that - v f e c .  
Because ( -  Vf)' is continuous o n / ) ~ ,  both 

c~ = max ( -  vf)'(x) and fl = min ( -  Vf)'(x) 
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exist and are nonnegative. Assume fl = 0. Then there exists ~ e/3~ with 
( -  vf)'(,2)= 0. Inserting expression (4.8) and using the fact that both sums 
are nonnegative, this being true in the second sum for every term, we get, 
for all n ~ N, 

f 1 0 

Because the set {1/(Y+n):n~N} is a set of uniqueness for the 
holomorphic function f ' ,  we get f'=-O and hence j~-cons t  on D~. 
Because, however, f e A ~ ( D ) ,  we see that f - - 0 .  Therefore fl must be 
positive and 

flfio <'%c -- Vf <~c ~Uo (4.10) 

An immediate consequence of Lemma 2 is the following result: 

T h e o r e m  2. The operator - X : A ~ ( D ) ~ J ~ ( D )  has a simple 
positive dominant eigenvalue -'~2 with eigenfunction h2=~2 .h l ,  where 
i2 e C. There is no further eigenfunction in hi" C. 

ProoL Because A~,oo(D ) is just the complexified Banach space 
L,R Al,oo(D), the theorem follows from Lemma 2 and Krasnoselskii's theorem 

on uo-positive operators in Ref. 8, Appendix C. 

Coro l l a ry .  The operator L~:AI,~(D)--*At,~(D) has a simple 
positive dominant eigenvalue )q = 1 and a simple negative subdominant 
eigenvalue 22 with 12~1 < -22 < 21 = 1 for all i~> 3. 

The problem now is to determine the eigenvalue ,~2. But this can be 
achieved by a minimax principle, which follows immediately from the 
foregoing result as derived in a similar situation in Ref. 8: 

(vr (vr 
min max - -  = 22 = max min - -  (4.11) 

From this we get rigorous upper and lower bounds for the eigenvalue ).2: 

min (Vf)'(x) ~< ,~2 ~< max (Vf)'(x____~) (4.12) 
~,~o~ f ' (x)  x ~  f ' (x)  

where f is any element in the interior ~" of the cone C. The above minimax 
principle has to be compared with a completely analogous one for the 
highest eigenvalue 21 of the operator s 

max min ~ f ( x )  21 min max ~ f ( x )  
f ~ k + x ~  f(x)  f~k+x~o, f (x)  
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where K+ is the cone 

K+ = { f e  A ~.~o(D): f (x )  >~ 0 o n / ) ~  } 

in the real Banach space A~.~(D). In this case, however, the formula is not 
very interesting, because by relation (4.2), 2~ must be 1 anyhow. 

Remark. By using, for instance, the test function f ( z ) =  
(z+ 1 ) / ( z + r ) - c  with r =  1.14617 and c chosen such that feA~oo(D ), we 
get the following numerical bounds on 22: 

-0.2995 ~> '~2 ~ --0.3038 

which has to be compared with the bounds in I, which were obtained by a 
more sophisticated procedure. Taking more general test functions with 
more than one free parameter will certainly improve the above bounds 
considerably. 

Let us close with some conjectures concerning the spectral properties 
of a class of composition operators on spaces of holomorphic functions of 
the form we found for the transfer operator for the Gauss map. In Refs. 9 
and 10 we discussed composition operators of the form 

~ f ( z )  = f o @(z) 

on the space Ao~(D), D c C', where 0: D ~ D  is a holomorphic map of D 
into itself, which furthermore leaves D ~ . = D ~  R n invariant and has its 
unique fixed point in D a.. We found that 5e has only real, simple eigen- 
values under these conditions. The results on the transfer operator 2~ ~ for 
the Gauss map (respectively other piecewise linear expanding maps of the 
unit interval) suggest that the following conjecture is true: 

C o n j e c t u r e  1. Let ~i :D ~ D  be a finite or countable family of 
holomorphic maps of a domain D c C into itself such that ~,i: Da ~ D a .  
Assume that all the fixed points of the maps ~,z belong to DE. Then the 
spectrum of the linear operator 

5f f (z)  = • q)if o ~t i(z ) 
i 

where (p~ are holomorphic on D and real on D R, is real and every eigen- 
value is simple. 

In case of the transfer operator 5e for the Gauss map we expect the 
following conjecture to be true: 

C o n j e c t u r e  2. If O~(z) = 1/(z+i) and cpi(z) : 1/(z+ i)2, which 
means ~ is the transfer operator for the Gauss map T, the eigenvalues 2i 
alternate in sign, that is, ( -  1) ~+ ~ 2~ > 0. 
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One could think that Conjecture 1 is related to the existence of a self- 
adjoint operator in some Hilbert space which has the same spectrum as ~ ,  
as we found in the case of the Gauss map. Work in this direction is in 
progress and we hope to come back to these conjectures soon. 

An interesting application of Conjecture 1 would be that Ruelle's ~ 
zeta function for certain expanding systems has only simple poles, which 
furthermore all lie on the real axis. For the Gauss map this follows from 
our results in this and the former paper/1~ 
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